REDES NEURAIS ARTIFICIAIS APLICADAS A SIMULAÇÃO DE VAZÃO NA BACIA HIDROGRÁFICA DO RIO ITAPEMIRIM - ES
Nome: REGIANE SOUZA VILANOVA
Tipo: Dissertação de mestrado acadêmico
Data de publicação: 23/02/2017
Orientador:
Nome![]() |
Papel |
---|---|
ROBERTO AVELINO CECÍLIO | Co-orientador |
SIDNEY SARA ZANETTI | Orientador |
Banca:
Nome![]() |
Papel |
---|---|
ELIAS FERNANDES DE SOUSA | Examinador Externo |
ROBERTO AVELINO CECÍLIO | Coorientador |
SIDNEY SARA ZANETTI | Orientador |
VICENTE DE PAULO SANTOS DE OLIVEIRA | Examinador Externo |
Resumo: Há tempos o homem busca o adequado conhecimento dos processos hidrológicos para retirar deles o melhor aproveitamento. Simulações de vazões são bastante utilizadas e sugeridas para a gestão sustentável dos recursos hídricos. As redes neurais artificiais (RNAs) são modelos empíricos amplamente utilizados para modelar o processo chuva-vazão. O presente estudo tem por objetivo aplicar e testar a viabilidade de utilização de RNAs como uma opção para simular a vazão na bacia hidrográfica do Rio Itapemirim (BHRI), ES. Nesta pesquisa foi avaliada a capacidade da rede neural em modelar o processo chuva-vazão em base diária, usando 34 anos de dados pluviométricos e fluviométricos, em 12 sub-bacias. Três tipos de vazões foram simuladas: vazão diária total (q), vazão diária de escoamento superficial (qSup) e vazão diária referente ao escoamento subterrâneo (qSub). No processo de treinamento das redes foram testadas diversas combinações de dados de entrada, incluindo dados de precipitação e evapotranspiração potencial, em três sub-bacias: Paineiras (maior área); Rive (área intermediária) e Usina Fortaleza (menor área). As redes treinadas nessas sub-bacias foram testadas também nas outras sub-bacias. Os resultados mostram que as RNAs possuem maior eficiência nas bacias onde foram treinadas. O modelo composto pelas precipitações dos 5 dias anteriores e dos 30 dias antecedentes acumulados, (Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, P30) simulou melhor a vazão diária total em todas as sub-bacias nas quais foi treinado, com NSE de 0,861, 0,837 e 0,711 para Paineiras, Rive e Usina Fortaleza, respectivamente. Ao treinar a rede para Paineiras e depois extrapolar para as sub-bacias de áreas menores (Lajinha, Iuna, Ibitirama e Usina Fortaleza), os resultados se mostraram insatisfatórios, Em virtude desses resultados insatisfatórios foram realizados testes para sub-bacias de áreas menores, com o intuito de verificar se a extrapolação de uma sub-bacia menor para uma menor apresentaria resultados melhores. As redes treinadas para Rive (área intermediária) apresentou resultados melhores quando testadas nas outras sub-bacias, indicando a provável influência da escala das bacias nesse tipo de comportamento. Em relação à separação do
escoamento superficial e subterrâneo, a simulação do escoamento superficial apresentou melhores resultados do que o escoamento de base. Comparando-se os valores obtidos com a entrada da vazão total na rede e a separação da mesma em escoamento superficial e subterrâneo, os valores foram semelhantes para Paineiras, apresentando NSE de 0,861 e 0,902, respectivamente, indicando que não há melhoria expressiva ao simular as vazões separadamente. A partir dos testes realizados, pode-se concluir que é possível estimar a vazão diária na BHRI, de forma satisfatória, utilizando RNAs e dados de precipitação como variáveis de entrada.
Palavras-chave: rede neural artificial; simulação de vazão; processo chuva-vazão; modelagem.